Template:Infobox spaceflight

Lunar IceCube is a planned NASA nanosatellite mission to prospect, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans. It will potentially fly as a secondary payload mission on the first flight of the Space Launch System, Exploration Mission 1 (EM-1) scheduled to launch in 2018.[1][2]


The lunar mission was designed by Morehead State University and its partners, the Busek Company, NASA Goddard Spaceflight Center, and The Catholic University of America (CUA).[3] It was selected in April 2015 by NASA's NextSTEP program ('Next Space Technologies for Exploration Partnerships') and awarded a contract worth up to $7.9 million for further development.[1][2]

The Lunar IceCube spacecraft will have a 6U CubeSat format, and a mass of about ≈14 kg (Template:Convert/round lb). It is one of eleven CubeSats planned to be carried on board the maiden flight of the SLS EM-1 mission as secondary payloads in cis-lunar space, scheduled for 2018.[2][4] It will be deployed during lunar trajectory and will use an innovative electric RF ion engine to achieve lunar capture and the science orbit to allow the team to make systematic measurements of lunar water features from an orbit about 100 km (Template:Convert/round mi) above the lunar surface.[2] The Principal Investigator is Ben Malphrus, Director of the Space Science Center at Morehead State University.


NASA's Lunar Prospector, Clementine, Lunar Crater Observation and Sensing Satellite (LCROSS), the Lunar Reconnaissance Orbiter (LRO) and India's Chandrayaan-1 lunar orbiters and other missions, confirmed both water (H2O) and hydroxyl (—OH-) deposits at high latitudes on the lunar surface, indicating the presence of trace amounts of adsorbed or bound water are present,[5][6][7] but their instruments weren't optimized for fully or systematically characterizing the elements in the infrared wavelength bands ideal for detecting water.[3] These missions suggest that there might be enough ice water at polar regions to be used by future landed missions,[6][7] but the distribution is difficult to reconcile with thermal maps.[5]

Lunar prospecting missions are intended to pave the way toward incorporating use of space resources into mission architectures. NASA's planning for eventual human missions to Mars depends on tapping the local natural resources to make oxygen and propellant for launching the return ship back to Earth, and a lunar precursor mission is a convenient location to test such in situ resource utilization (ISRU) technology.[8]


The science goals are to investigate the distribution of water and other volatiles, as a function of time of day, latitude, and lunar soil composition.[1][2]


BIT-3 Iodine 60W with BHC-50E

Busek's iodine BIT-3 in operation

Lunar IceCube will include a version of the Broadband InfraRed Compact High Resolution Exploration Spectrometer (BIRCHES) instrument, developed by NASA's GSFC.[3] BIRCHES is a compact version of the volatile-seeking spectrometer instrument onbord the New Horizons Pluto flyby mission.[2]


The tiny CubeSat spacecraft will make use of a miniature electric RF ion engine system based on Busek's 3 centimeter RF ion thruster, also known as BIT-3.[2][9] It utilizes a solid iodine propellant and an inductively-coupled plasma system that produces 1.1 mN thrust and 2800 sec specific impulse from approximately 50W total input power.[9] It will also use this engine for capture into lunar orbit, and orbit adjustments.[2] It is estimated the spacecraft will take about 3 months to reach the Moon.[3]

See alsoEdit


Template:Future spaceflights

This page uses Creative Commons Licensed content from Wikipedia (view authors). Smallwikipedialogo.png
Community content is available under CC-BY-SA unless otherwise noted.